Center of Mass and Centroids

Examples: Centroids

Locate the centroid of the circular arc

Solution: Polar coordinate system is better Since the figure is symmetric: centroid lies on the x axis

Differential element of arc has length $dL = rd\Theta$ Total length of arc: $L = 2\alpha r$ *x*-coordinate of the centroid of differential element: $x=rcos\Theta$

$$\overline{x} = \frac{\int x dL}{L} \quad \overline{y} = \frac{\int y dL}{L} \quad \overline{z} = \frac{\int z dL}{L}$$
$$L\overline{x} = \int x dL \quad 2\alpha r \overline{x} = \int_{-\alpha}^{\alpha} (r \cos \theta) r d\theta$$
$$2\alpha r \overline{x} = 2r^2 \sin \alpha$$
$$\overline{x} = \frac{r \sin \alpha}{\alpha}$$

For a semi-circular arc: $2\alpha = \pi \rightarrow$ centroid lies at $2r/\pi$

Center of Mass and Centroids

Examples: Centroids

Locate the centroid of the triangle along h from the base

Solution:

dA = xdy $\frac{x}{(h-y)} = \frac{b}{h}$

Total Area A $=\frac{1}{2}bh$ $y = y_c$

$$\overline{x} = \frac{\int x_c dA}{A}$$
 $\overline{y} = \frac{\int y_c dA}{A}$ $\overline{z} = \frac{\int z_c dA}{A}$

$$A\bar{y} = \int y_c dA \quad \Rightarrow \frac{bh}{2}\bar{y} = \int_0^h y \frac{b(h-y)}{y} dy = \frac{bh^2}{6}$$
$$\bar{y} = \frac{h}{3}$$

Shape		\overline{x}	\overline{y}	Area
Triangular area	$\frac{1}{ } \frac{\overline{y}}{ } \frac{b}{2} + $		$\frac{h}{3}$	$\frac{bh}{2}$
Quarter-circular area	$\begin{array}{c} c \\ \hline \hline$	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area		0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter-elliptical area	$C \bullet \bullet C$	$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Semielliptical area	$\begin{array}{c c} O & & & & & & & \\ \hline & & & & & & \\ \hline \rightarrow & \overline{x} & \leftarrow & & & \\ \hline \end{array} \begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$	0	$\frac{4b}{3\pi}$	$\frac{\pi ab}{2}$

Semiparabolic area	$a \rightarrow c$	$\frac{3a}{8}$	$\frac{3h}{5}$	$\frac{2ah}{3}$
Parabolic area	$\begin{array}{c} O \\ \rightarrow \overline{x} \end{array} \end{array} \begin{array}{c} \overline{y} \\ O \\ \hline \end{array} \begin{array}{c} a \\ \rightarrow \end{array} \end{array} \begin{array}{c} h \\ \downarrow \end{array}$	0	$\frac{3h}{5}$	$\frac{4ah}{3}$
Parabolic spandrel	$O = \frac{a}{x} + \frac{a}{y} + $	$\frac{3a}{4}$	$\frac{3h}{10}$	$\frac{ah}{3}$
General spandrel	$a \xrightarrow{\qquad } \\ y = kx^n \xrightarrow{\qquad } \\ h \\ \hline \\ \hline$	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$
Circular sector	r	$\frac{2r\sin\alpha}{3\alpha}$	0	$lpha r^2$

Shape		\overline{x}	\overline{y}	Length
Quarter-circular arc		$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc	$O \qquad $	0	$\frac{2r}{\pi}$	πr
Arc of circle	$ \begin{array}{c} r \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\frac{r \sin \alpha}{\alpha}$	0	2ar