Center of Mass and Centroids

Examples: Centroids

Locate the centroid of the circular arc
Solution: Polar coordinate system is better
Since the figure is symmetric: centroid lies on the x axis
Differential element of arc has length $d L=r d \theta$
Total length of arc: $L=2 \alpha r$
x-coordinate of the centroid of differential element: $x=r \cos \Theta$

$$
\begin{gathered}
\bar{x}=\frac{\int x d L}{L} \quad \bar{y}=\frac{\int y d L}{L} \quad \bar{z}=\frac{\int z d L}{L} \\
\mathrm{~L} \bar{x}=\int x d L \quad 2 \alpha r \bar{x}=\int_{-\alpha}^{\alpha}(r \cos \theta) r d \theta \\
2 \alpha r \bar{x}=2 r^{2} \sin \alpha \\
\bar{x}=\frac{r \sin \alpha}{\alpha}
\end{gathered}
$$

For a semi-circular arc: $2 \alpha=\pi \rightarrow$ centroid lies at $2 r / \pi$

Center of Mass and Centroids

Examples: Centroids

Locate the centroid of the triangle along h from the base

Solution:

$$
d A=x d y \quad \frac{x}{(h-y)}=\frac{b}{h}
$$

Total Area $\mathrm{A}=\frac{1}{2} b h \quad y=y_{c}$
$\bar{x}=\frac{\int x_{c} d A}{A} \quad \bar{y}=\frac{\int y_{c} d A}{A} \quad \bar{z}=\frac{\int z_{c} d A}{A}$

$$
\begin{aligned}
\mathrm{A} \bar{y}=\int y_{c} d A & \Rightarrow \frac{b h}{2} \bar{y}=\int_{0}^{h} y \frac{b(h-y)}{y} d y=\frac{b h^{2}}{6} \\
& \bar{y}=\frac{h}{3}
\end{aligned}
$$

Shape		\bar{x}	\bar{y}	Area
Triangular area			$\frac{h}{3}$	$\frac{b h}{2}$
Quarter-circular area		$\frac{4 r}{3 \pi}$	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{4}$
Semicircular area		0	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area		$\frac{4 a}{3 \pi}$	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{4}$
Semielliptical area		0	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{2}$

| Semiparabolic
 area | Parabolic area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parabolic spandrel | |

Shape				
Quarter-circular arc		\bar{x}	\bar{y}	Length
Semicircular arc				
Arc of circle		$\frac{2 r}{\pi}$	$\frac{2 r}{\pi}$	$\frac{\pi r}{2}$

